{Reference Type}: Journal Article {Title}: Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. {Author}: Jiang L;Hao Y;Li Q;Dai Z; {Journal}: Int J Mol Sci {Volume}: 25 {Issue}: 12 {Year}: 2024 Jun 18 {Factor}: 6.208 {DOI}: 10.3390/ijms25126694 {Abstract}: Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut function and health. However, whether these metabolites modulate gut ion transport and serotonin (5-HT) metabolism and signaling requires further investigation. The aim of this study was to investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current, and 100 μM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 μM cinnamic acid, indolelactic acid (ILA), and 10 μM CGA or indoleacetaldehyde (IAld) treatments downregulated (p < 0.05) the mRNA levels of Tph1. In addition, 10 μM IAld or 100 μM ILA upregulated (p < 0.05) the expression of monoamine oxidase A (Maoa). However, 10 μM CGA or 100 μM PA downregulated (p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05) the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced (p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related gut homeostasis in health and disease.