{Reference Type}: Journal Article {Title}: Genome-Wide Identification of the TGA Gene Family and Expression Analysis under Drought Stress in Brassica napus L. {Author}: Duan Y;Xu Z;Liu H;Wang Y;Zou X;Zhang Z;Xu L;Xu M; {Journal}: Int J Mol Sci {Volume}: 25 {Issue}: 12 {Year}: 2024 Jun 8 {Factor}: 6.208 {DOI}: 10.3390/ijms25126355 {Abstract}: TGA transcription factors belong to Group D of the bZIP transcription factors family and play vital roles in the stress response of plants. Brassica napus is an oil crop with rich economic value. However, a systematic analysis of TGA gene family members in B. napus has not yet been reported. In this study, we identified 39 full-length TGA genes in B. napus, renamed TGA1~TGA39. Thirty-nine BnTGA genes were distributed on 18 chromosomes, mainly located in the nucleus, and differences were observed in their 3D structures. Phylogenetic analysis showed that 39 BnTGA genes could be divided into five groups. The BnTGA genes in the same group had similar structure and motif compositions, and all the BnTGA genes had the same conserved bZIP and DOG1 domains. Phylogenetic and synteny analysis showed that the BnTGA genes had a close genetic relationship with the TGA genes of the Brassica juncea, and BnTGA11 and BnTGA29 may play an important role in evolution. In addition, qRT-PCR revealed that three genes (BnTGA14/17/23) showed significant changes in eight experimental materials after drought treatment. Meanwhile, it can be inferred from the results of drought treatment on different varieties of rapeseed that the stress tolerance of parental rapeseed can be transmitted to the offspring through hybridization. In short, these findings have promoted the understanding of the B. napus TGA gene family and will contribute to future research aimed at B. napus resistant breeding.