{Reference Type}: Journal Article {Title}: TNIP3 protects against pathological cardiac hypertrophy by stabilizing STAT1. {Author}: Shi H;Yu Y;Li D;Zhu K;Cheng X;Ma T;Tao Z;Hong Y;Liu Z;Zhou S;Zhang J;Chen Y;Zhang XJ;Zhang P;Li H; {Journal}: Cell Death Dis {Volume}: 15 {Issue}: 6 {Year}: 2024 Jun 26 暂无{DOI}: 10.1038/s41419-024-06805-4 {Abstract}: Pathological cardiac hypertrophy is one of the major risk factors of heart failure and other cardiovascular diseases. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. Here, we identified the first evidence that TNFAIP3 interacting protein 3 (TNIP3) was a negative regulator of pathological cardiac hypertrophy. We observed a significant upregulation of TNIP3 in mouse hearts subjected to transverse aortic constriction (TAC) surgery and in primary neonatal rat cardiomyocytes stimulated by phenylephrine (PE). In Tnip3-deficient mice, cardiac hypertrophy was aggravated after TAC surgery. Conversely, cardiac-specific Tnip3 transgenic (TG) mice showed a notable reversal of the same phenotype. Accordingly, TNIP3 alleviated PE-induced cardiomyocyte enlargement in vitro. Mechanistically, RNA-sequencing and interactome analysis were combined to identify the signal transducer and activator of transcription 1 (STAT1) as a potential target to clarify the molecular mechanism of TNIP3 in pathological cardiac hypertrophy. Via immunoprecipitation and Glutathione S-transferase assay, we found that TNIP3 could interact with STAT1 directly and suppress its degradation by suppressing K48-type ubiquitination in response to hypertrophic stimulation. Remarkably, preservation effect of TNIP3 on cardiac hypertrophy was blocked by STAT1 inhibitor Fludaradbine or STAT1 knockdown. Our study found that TNIP3 serves as a novel suppressor of pathological cardiac hypertrophy by promoting STAT1 stability, which suggests that TNIP3 could be a promising therapeutic target of pathological cardiac hypertrophy and heart failure.