{Reference Type}: Journal Article {Title}: Development and Characterization of a Sol-Gel-Functionalized Glass Carbon Electrode Probe for Sensing Ultra-Trace Amounts of NH3 and NH4+ in Water. {Author}: Alwael H;Oubaha M;El-Shahawi MS; {Journal}: Gels {Volume}: 10 {Issue}: 6 {Year}: 2024 Jun 4 {Factor}: 4.432 {DOI}: 10.3390/gels10060382 {Abstract}: This study centers on the development and characterization of an innovative electrochemical sensing probe composed of a sensing mesoporous functional sol-gel coating integrated onto a glassy carbon electrode (sol-gel/GCE) for the detection of NH3 and/or NH4+ in water. The main interest for integrating a functional sol-gel coating onto a GCE is to increase the selective and sensing properties of the GCE probe towards NH3 and/or NH4+ ions. The structure and surface morphology of the newly developed sol-gel/GCE probe were characterized employing scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Fourier-transform infrared (FTIR), while the electrochemical sensing properties were evaluated by Berthelot's reaction, cyclic voltammetry (CV), and adsorptive square wave-anodic striping voltammetry (Ads SW-ASV). It is shown that the newly developed sol-gel coating is homogeneously deposited on the GCE with a sub-micron and uniform thickness close to 630 nm and a surface roughness of 25 nm. The sensing testing of the sol-gel/GCE probe showed limits of detection and limits of quantitation of 1.7 and 5.56 nM of NH4+, respectively, as well as a probe sensitivity of 5.74 × 10-1 μA/μM cm-2. The developed probe was fruitfully validated for the selective detection of NH3/NH4+ in fresh and sea water samples. Computed Student texp (0.45-1.25) and Fexp (1.69-1.78) (n = 5) tests were less than the theoretical ttab (2.78) and Ftab (6.39) at 95% probability.