{Reference Type}: Journal Article {Title}: Remendable Cross-Linked Alginate/Gelatin Hydrogels Incorporating Nanofibers for Wound Repair and Regeneration. {Author}: Hong C;Chung H;Lee G;Kim D;Jiang Z;Kim SH;Lee K; {Journal}: Biomacromolecules {Volume}: 25 {Issue}: 7 {Year}: 2024 Jul 8 {Factor}: 6.978 {DOI}: 10.1021/acs.biomac.4c00406 {Abstract}: Wound dressings made from natural-derived polymers are highly valued for their biocompatibility, biodegradability, and biofunctionality. However, natural polymer-based hydrogels can come with their own set of limitations, such as low mechanical strength, limited cell affinity, and the potential cytotoxicity of cross-linkers, which delineate the boundaries of their usage and hamper their practical application. To overcome the limitation of natural-derived polymers, this study utilized a mixture of oxidized alginate and gelatin with 5 mg/mL polycaprolactone (PCL):gelatin nanofiber fragments at a ratio of 7:3 (OGN-7) to develop a hydrogel composite wound dressing that can be injected and has the ability to be remended. The in situ formation of the remendable hydrogel is facilitated by dual cross-linking of oxidized alginate chains with gelatin and PCL/gelatin nanofibers through Schiff-base mechanisms, supported by the physical integration of nanofibers, thereby obviating the need for additional cross-linking agents. Furthermore, OGN-7 exhibits increased stiffness (γ = 79.4-316.3%), reduced gelation time (543 ± 5 to 475 ± 5 s), improved remendability of the hydrogel, and excellent biocompatibility. Notably, OGN-7 achieves full fusion within 1 h of incubation and maintains structural integrity under external stress, effectively overcoming the inherent mechanical weaknesses of natural polymer-based dressings and enhancing biofunctionality. The therapeutic efficacy of OGN-7 was validated through a full-thickness in vivo wound healing analysis, which demonstrated that OGN-7 significantly accelerates wound closure compared to alginate-based dressings and control groups. Histological analysis further revealed that re-epithelialization and collagen deposition were markedly enhanced in the regenerating skin of the OGN-7 group, confirming the superior therapeutic performance of OGN-7. In summary, OGN-7 optimized the synergistic effects of natural polymers, which enhances their collective functionality as a wound dressing and expands their utility across diverse biomedical applications.