{Reference Type}: Journal Article {Title}: In situ growth of HKUST-1 on electrospun polyacrylonitrile nanofibers/regenerated cellulose aerogel for efficient methylene blue adsorption. {Author}: Li X;Wang L;Li S;Yu S;Liu Z;Liu Q;Dong X; {Journal}: Int J Biol Macromol {Volume}: 274 {Issue}: 0 {Year}: 2024 Aug 22 {Factor}: 8.025 {DOI}: 10.1016/j.ijbiomac.2024.133381 {Abstract}: Dyes, as organic pollutants, are causing increasingly severe environmental problems. Metal-organic frameworks (MOFs) are considered promising dye adsorbents; however, their application is limited due to their powder or solid particle forms and limited reusability. Therefore, this study proposes an innovative approach to develop a novel MOF-based composite aerogel, specifically a HKUST-1/polyacrylonitrile nanofibers/regenerated cellulose (HKUST-1/PANNs/RC) composite aerogel adsorbent, for the adsorption of pollutants in water. This adsorbent was successfully prepared using a simple method combining covalent crosslinking, quick freezing, freeze-drying, in-situ growth synthesis, and solvothermal techniques. The HKUST-1/PANNs/RC composite aerogel exhibits a significantly large specific surface area, which is approximately 64 times greater than that of PANNs/RC (10.45 m2·g-1), with a specific surface area of 669.9 m2·g-1. The PANNs serve as a support framework, imparting excellent mechanical properties to the composite aerogel, enhancing its overall stability and recoverability. Additionally, the composite aerogel contains numerous -COOH and -OH groups on its surface, providing strong acid resistance and facilitating interactions with pollutant molecules through electrostatic interactions, π-π conjugation, n-π* interactions, and hydrogen bonding, thereby promoting the adsorption process. Using methylene blue (MB) as a probe molecule, the study results demonstrate that the HKUST-1/PANNs/RC composite aerogel has an adsorption capacity of 522.01 mg·g-1 for MB (25 h), exhibiting excellent adsorption performance. This composite aerogel shows great potential for application in water pollution control.