{Reference Type}: Journal Article {Title}: Neurological Impact of Slower Rewarming during Bypass Surgery in Infants. {Author}: Muehlschlegel G;Kubicki R;Jacobs-LeVan J;Kroll J;Klemm R;Humburger F;Stiller B;Fleck T; {Journal}: Thorac Cardiovasc Surg {Volume}: 72 {Issue}: 0 {Year}: 2024 Jan {Factor}: 1.756 {DOI}: 10.1055/s-0044-1787650 {Abstract}: BACKGROUND:  Hypothermia is a neuroprotective strategy during cardiopulmonary bypass. Rewarming entailing a rapid rise in cerebral metabolism might lead to secondary neurological sequelae. In this pilot study, we aimed to validate the hypothesis that a slower rewarming rate would lower the risk of cerebral hypoxia and seizures in infants.
METHODS:  This is a prospective, clinical, single-center study. Infants undergoing cardiac surgery in hypothermia were rewarmed either according to the standard (+1°C in < 5 minutes) or a slow (+1°C in > 5-8 minutes) rewarming strategy. We monitored electrocortical activity via amplitude-integrated electroencephalography (aEEG) and cerebral oxygenation by near-infrared spectroscopy during and after surgery.
RESULTS:  Fifteen children in the standard rewarming group (age: 13 days [5-251]) were cooled down to 26.6°C (17.2-29.8) and compared with 17 children in the slow-rewarming group (age: 9 days [4-365]) with a minimal temperature of 25.7°C (20.1-31.4). All neonates in both groups (n = 19) exhibited suppressed patterns compared with 28% of the infants > 28 days (p < 0.05). During rewarming, only 26% of the children in the slow-rewarming group revealed suppressed aEEG traces (vs. 41%; p = 0.28). Cerebral oxygenation increased by a median of 3.5% in the slow-rewarming group versus 1.5% in the standard group (p = 0.9). Our slow-rewarming group revealed no aEEG evidence of any postoperative seizures (0 vs. 20%).
CONCLUSIONS:  These results might indicate that a slower rewarming rate after hypothermia causes less suppression of electrocortical activity and higher cerebral oxygenation during rewarming, which may imply a reduced risk of postoperative seizures.