{Reference Type}: Journal Article {Title}: 14-3-3ζ Suppresses RANKL Signaling by Destabilizing TRAF6. {Author}: Ayyasamy R;Fan S;Czernik P;Lecka-Czernik B;Chattopadhyay S;Chakravarti R; {Journal}: J Biol Chem {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 20 暂无{DOI}: 10.1016/j.jbc.2024.107487 {Abstract}: Macrophages are essential regulators of inflammation and bone loss. RANKL, a pro-inflammatory cytokine, is responsible for macrophage differentiation to osteoclasts and bone loss. We recently showed that 14-3-3ζ-knockout (YwhazKO) rats exhibit increased bone loss in the inflammatory arthritis model. 14-3-3ζ is a cytosolic adaptor protein that actively participates in many signaling transductions. However, the role of 14-3-3ζ in RANKL signaling or bone remodeling is unknown. We investigated how 14-3-3ζ affects osteoclast activity by evaluating its role in RANKL signaling. We utilized 14-3-3ζ-deficient primary bone marrow-derived macrophages (BMDMs) obtained from wildtype (Wt) and YwhazKO animals, and RAW cells generated using CRISPR-Cas9. Our results showed that 14-3-3ζ-deficient macrophages, upon RANKL stimulation, have bigger and stronger TRAP-positive multinucleated cells and increased bone resorption activity. The presence of 14-3-3ζ suppressed RANKL-induced MAPK and AKT phosphorylation, transcription factors (NFATC1 and p65) nuclear translocation, and subsequently, gene induction (Rank, Acp5, and Ctsk). Mechanistically, 14-3-3ζ interacts with TRAF6, an essential component of the RANKL receptor complex. Upon RANKL stimulation, 14-3-3ζ-TRAF6 interaction was increased, while RANK-TRAF6 interaction was decreased. Importantly, 14-3-3ζ supported TRAF6 ubiquitination and degradation by the proteasomal pathway, thus dampening the downstream RANKL signaling. Together, we show that 14-3-3ζ regulates TRAF6 levels to suppress inflammatory RANKL signaling and osteoclast activity. To the best of our knowledge, this is the first report on 14-3-3ζ regulation of RANKL signaling and osteoclast activation.