{Reference Type}: Journal Article {Title}: New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? {Author}: Williams ZJ;Payne LB;Wu X;Gourdie RG; {Journal}: Heart Rhythm {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 20 {Factor}: 6.779 {DOI}: 10.1016/j.hrthm.2024.06.029 {Abstract}: Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by two classes of membrane-spanning subunit-an α-subunit (pore forming) and two β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are four β-subunits, β1-β4, encoded by four genes, SCN1B-SCN4B, each of which are expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular Amino-terminal domain facilitates adhesive interactions in intercalated discs and that its Carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway-with a Carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1, but has a unique Carboxyl-terminus. Whilst β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known on the two β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel anti-arrhythmic therapeutics.