{Reference Type}: Journal Article {Title}: Discovery of colchicine aryne cycloadduct as a potent molecule for the abrogation of epithelial to mesenchymal transition via modulating cell cycle regulatory CDK-2 and CDK-4 kinases in breast cancer cells. {Author}: Iqbal Lone W;Chand J;Kumar P;Garg Y;Ahmed Z;Mukherjee D;Goswami A;Momo H AnĂ£l J; {Journal}: Bioorg Chem {Volume}: 150 {Issue}: 0 {Year}: 2024 Jun 20 {Factor}: 5.307 {DOI}: 10.1016/j.bioorg.2024.107581 {Abstract}: In this study, we synthesized a new-generation library of colchicine derivatives via cycloaddition of colchicine utilizing position C-8 and C-12 diene system regioselectivity with aryne precursor to generate a small, focused library of derivatives. We assessed their anticancer activity against various cancer cell lines like MCF-7, MDA-MB-231, MDA-MB-453, and PC-3. Normal human embryonic kidney cell line HEK-293 was used to determine the toxicity. Among these derivatives, silicon-tethered compound B-4a demonstrated the highest potency against breast cancer cells. Subsequent mechanistic studies revealed that B-4a effectively modulates cell cycle regulatory kinases (CDK-2 and CDK-4) and their associated cyclins (cyclin-B1, cyclin-D1), inducing apoptosis. Additionally, B-4a displayed a noteworthy impact on tubulin polymerization, compared to positive control flavopiridol hydrochloride in a dose-dependent manner, and significantly disrupted the vimentin cytoskeleton, contributing to G1 arrest in breast cancer cells. Moreover, B-4a exhibited substantial anti-metastatic properties by inhibiting breast cancer cell migration and invasion. These effects are attributed to the down-regulation of major epithelial to mesenchymal transition (EMT) factors, including vimentin and Twist-1, and the upregulation of the epithelial marker E-cadherin in an apoptosis-dependent manner.