{Reference Type}: Journal Article {Title}: RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca2+ Response in Rheumatoid Arthritis. {Author}: Yuan L;Jiang N;Li Y;Wang X;Wang W; {Journal}: Inflammation {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 21 {Factor}: 4.657 {DOI}: 10.1007/s10753-024-02067-6 {Abstract}: Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.