{Reference Type}: Journal Article {Title}: Development of isoniazid electrochemical sensor using nickel ferrite - nitrogen and sulfur co-doped graphene quantum dot nanocomposite as a new electrode modifier. {Author}: Ahsani MK;Ahour F;Asghari E; {Journal}: Sci Rep {Volume}: 14 {Issue}: 1 {Year}: 2024 Jun 20 {Factor}: 4.996 {DOI}: 10.1038/s41598-024-64797-9 {Abstract}: This work reports the synthesis of nickel ferrite decorated nitrogen and sulfur co-doped graphene quantum dot (NF@N, S:GQD) and its use as an electrode modifier. The developed NF@N, S:GQD modified glassy carbon electrode (NF@N, S:GQD/GCE) was applied to assess isoniazid (INZ) concentration based on its oxidation at the surface of the proposed electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as appropriate electrochemical techniques to study the electrochemical behavior of INZ and determine it. Based on combined evidence from surveys, research, and personal results, it is thought that the combination of nickel ferrite and doped graphene quantum dots can synergistically affect results, leading to increased sensitivity and reduced detection limits. This is probably mainly due to the high electrical conductivity of N, S-GQD structure, the electrocatalytic effect of nickel ferrite, and increased surface area resulting from the nano size of the modifier. The optimum conditions for preparing of the modified electrode and determination of INZ are selected by performing electrochemical experiments. The voltammetric response of the sensor is linear from 0.3 to 40 nM INZ under optimal conditions and the detection limit of the sensor is 0.1 nM. The validity and performance of the prepared sensor were confirmed by determining the amount of INZ in the drug and urine as real samples. The composite of doped nanoparticles and nickel ferrite is an innovative modification material to create electrochemical sensors with high sensitivity and selectivity that can be used in pharmaceutical applications.