{Reference Type}: Journal Article {Title}: Dual emitting aggregation-induced electrochemiluminescence from tetrastyrene derivative for chloramphenicol detection. {Author}: Chen X;Zhao J;Wang Y;Yuan R;Chen S; {Journal}: Food Chem {Volume}: 457 {Issue}: 0 {Year}: 2024 Nov 1 {Factor}: 9.231 {DOI}: 10.1016/j.foodchem.2024.140100 {Abstract}: Chloramphenicol (CAP) poses a threat to human health due to its toxicity and bioaccumulation, and it is very important to measure it accurately and sensitively. This work explored a host-guest recognition strategy to mediate dual aggregation-induced electrochemiluminescence (AIECL) of 1,1,2,2-tetrakis(4-(pyridin-4-yl) phenyl)-ethene (TPPE) for ratio detection of CAP, in which, cucurbit[8]uril (CB[8]) served as host to assemble guest TPPE. The resulting supramolecular complex CB[8]-TPPE exhibited excellent dual-AIECL-emission with signal strength approximately four times that of TPPE aggregates and black hole quencher-1 (BHQ1) could efficiently quench dual-AIECL signal. CB[8]-TPPE coupled dual-function quencher BHQ1 and high-efficiency DNA reactor to achieve ultra-sensitive detection of CAP, exhibiting a linearity range of 10 fmol·L-1-100 nmol·L-1 and limit of detection of 1.81 fmol·L-1. CB[8]-TPPE provides a novel way to improve the dual-emission of TPE derivatives and sets up a promising platform for CAP detection, demonstrating a good practical application potential.