{Reference Type}: Journal Article {Title}: Spatial distribution of pesticide use based on crop rotation data in La Plata River basin: a case study from an agricultural region of Uruguay. {Author}: Fernández Nion C;Díaz Isasa I; {Journal}: Environ Monit Assess {Volume}: 196 {Issue}: 7 {Year}: 2024 Jun 20 {Factor}: 3.307 {DOI}: 10.1007/s10661-024-12759-z {Abstract}: The intensive global use of pesticides presents an escalating threat to human health, ecosystems, and water quality. To develop national and local environmental management strategies for mitigating pollution caused by pesticides, it is essential to understand the quantities, timing, and location of their application. This study aims to estimate the spatial distribution of pesticide use in an agricultural region of La Plata River basin in Uruguay. Estimates of pesticide use were made by surveying doses applied to each crop. This information was spatialized through identifying agricultural rotations using remote sensing techniques. The study identified the 60 major agricultural rotations in the region and mapped the use and application amount of the nine most significant active ingredients (glyphosate, 2,4-dichlorophenoxyacetic acid, flumioxazin, S-metolachlor, clethodim, flumetsulam, triflumuron, chlorantraniliprole, and fipronil). The results reveal that glyphosate is the most extensively used pesticide (53.5% of the area) and highest amount of use (> 1.44 kg/ha). Moreover, in 19% of the area, at least seven active ingredients are applied in crop rotations. This study marks the initial step in identifying rotations and estimating pesticide applications with high spatial resolution at a regional scale in agricultural regions of La Plata River basin. The results improve the understanding of pesticide spatial distribution based on data obtained from agronomists, technicians, and producers and provide a replicable methodological approach for other geographic and productive contexts. Generating baseline information is key to environmental management and decision making, towards the design of more robust monitoring systems and human exposure assessment.