{Reference Type}: Journal Article {Title}: Cloning, Expression, Purification, and Characterization of Lactate Dehydrogenase from Plasmodium knowlesi: A Zoonotic Malaria Parasite. {Author}: Choi JW;Choi MJ;Kim YJ;Kim SY; {Journal}: Int J Mol Sci {Volume}: 25 {Issue}: 11 {Year}: 2024 May 22 {Factor}: 6.208 {DOI}: 10.3390/ijms25115615 {Abstract}: Plasmodium knowlesi is the only Plasmodium that causes zoonotic disease among the Plasmodium that cause infection in humans. It is fatal due to its short asexual growth cycle within 24 h. Lactate dehydrogenase (LDH), an enzyme that catalyzes the final step of glycolysis, is a biomarker for diagnosing infection by Plasmodium spp. parasite. Therefore, this study aimed to efficiently produce the soluble form of P. knowlesi LDH (PkLDH) using a bacterial expression system for studying malaria caused by P. knowlesi. Recombinant pET-21a(+)-PkLDH plasmid was constructed by inserting the PkLDH gene into a pET-21a(+) expression vector. Subsequently, the recombinant plasmid was inserted into the protein-expressing Escherichia coli Rosetta(DE3) strain, and the optimal conditions for overexpression of the PkLDH protein were established using this strain. We obtained a yield of 52.0 mg/L PkLDH from the Rosetta(DE3) strain and confirmed an activity of 483.9 U/mg through experiments. This methodology for high-efficiency PkLDH production can be utilized for the development of diagnostic methods and drug candidates for distinguishing malaria caused by P. knowlesi.