{Reference Type}: Journal Article {Title}: Identifying the protective effects of miR-874-3p/ATF3 axis in intervertebral disc degeneration by single-cell RNA sequencing and validation. {Author}: Wang X;Wang Q;Li G;Xu H;Liu B;Yuan B;Zhou Y;Li Y; {Journal}: J Cell Mol Med {Volume}: 28 {Issue}: 12 {Year}: 2024 Jun {Factor}: 5.295 {DOI}: 10.1111/jcmm.18492 {Abstract}: Intervertebral disc degeneration (IVDD) severely affects the work and the quality of life of people. We previously demonstrated that silencing activation transcription factor 3 (ATF3) blocked the IVDD pathological process by regulating nucleus pulposus cell (NPC) ferroptosis, apoptosis, inflammation, and extracellular matrix (ECM) metabolism. Nevertheless, whether miR-874-3p mediated the IVDD pathological process by targeting ATF3 remains unclear. We performed single-cell RNA sequencing (scRNA-seq) and bioinformatics analysis to identify ATF3 as a key ferroptosis gene in IVDD. Then, Western blotting, flow cytometry, ELISA, and animal experiments were performed to validate the roles and regulatory mechanisms of miR-874-3p/ATF3 signalling axis in IVDD. ATF3 was highly expressed in IVDD patients and multiple cell types of IVDD rat, as revealed by scRNA-seq and bioinformatics analysis. GO analysis unveiled the involvement of ATF3 in regulating cell apoptosis and ECM metabolism. Furthermore, we verified that miR-874-3p might protect against IVDD by inhibiting NPC ferroptosis, apoptosis, ECM degradation, and inflammatory response by targeting ATF3. In vivo experiments displayed the protective effect of miR-874-3p/ATF3 axis on IVDD. These findings propose the potential of miR-874-3p and ATF3 as biomarkers of IVDD and suggest that targeting the miR-874-3p/ATF3 axis may be a therapeutic target for IVDD.