{Reference Type}: Journal Article {Title}: Exploring the effects of naringin on oxidative stress-impaired osteogenic differentiation via the Wnt/β-catenin and PI3K/Akt pathways. {Author}: Wang H;Liang J;Wang Y;Zheng J;Liu Y;Zhao Y;Ma Y;Chen P;Yang X; {Journal}: Sci Rep {Volume}: 14 {Issue}: 1 {Year}: 2024 06 18 {Factor}: 4.996 {DOI}: 10.1038/s41598-024-64952-2 {Abstract}: This study aimed to explore naringin's potential to promote the osteogenic differentiation of MC3T3-E1 under oxidative stress. It delved into Nar's connection with the Wnt/β-catenin and PI3K/Akt signaling pathways. Initially, 2911 OP-related genes were analyzed, revealing close ties with the PI3K/Akt and Wnt pathways alongside oxidative stress. Nar's potential targets-ESR1, HSP90AA1, and ESR2-were identified through various databases and molecular docking studies confirmed Nar's affinity with ESR1 and HSP90AA1. Experiments established optimal concentrations for Nar and H2O2. H2O2 at 0.3 mmol/L damaged MC3T3-E1 cells, alleviated by 0.1 µmol/L Nar. Successful establishment of oxidative stress models was confirmed by DCFH-DA probe and NO detection. Nar exhibited the ability to enhance osteogenic differentiation, counteracting oxidative damage. It notably increased osteoblast-related protein expression in MC3T3-E1 cells under oxidative stress. The study found Nar's positive influence on GSK-3β phosphorylation, β-catenin accumulation, and pathway-related protein expression, all critical in promoting osteogenic differentiation. The research concluded that Nar effectively promotes osteogenic differentiation in MC3T3-E1 cells under oxidative stress. It achieved this by activating the Wnt/β-catenin and PI3K/Akt pathways, facilitating GSK-3β phosphorylation, and enhancing β-catenin accumulation, pivotal in osteogenesis.