{Reference Type}: Journal Article {Title}: Soil Organic Matter and Total Nitrogen Reshaped Root-Associated Bacteria Community and Synergistic Change the Stress Resistance of Codonopsis pilosula. {Author}: Huo X;Zhou Y;Zhu N;Guo X;Luo W;Zhuang Y;Leng F;Wang Y; {Journal}: Mol Biotechnol {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 19 {Factor}: 2.86 {DOI}: 10.1007/s12033-024-01217-3 {Abstract}: The stress resistance of medicinal plants is essential to the accumulation of pharmacological active ingredients, but the regulation mechanism of biological factors and abiotic factors on medicinal plants is still unclear. To investigate the mechanism of soil nutrient and microecology on the stress resistance of C. pilosula, rhizosphere soil and roots were collected across the four seasons in Minxian, Gansu, and their physicochemical properties, as well as root-associated microorganisms, were examined. The results showed that the bacterial α-diversity indexes increased in the endosphere and rhizosphere from summer to autumn. At the same time, the community composition and function changed considerably. The stability of the endophytic bacterial community was higher than that rhizospheric bacteria, and the complexity of the endophytic bacterial community was lower than rhizospheric bacteria. Soil organic matter (OM), water content (WC), total potassium (TK), and total nitrogen (TN) have been identified as the key factors affecting bacterial community diversity and stress resistance of C. pilosula. WC, TN, and OM showed significant differences from summer to autumn (P < 0.5). Four key soil physiochemical factors changed significantly between seasons (P < 0.01). TN and OM change the stress resistance of C. pilosula mainly by changing the activity of antioxidant enzymes. Changes of OM and endophytic bacterial diversity affect the accumulation of soluble sugars to alter stress resistance. These four key soil physicochemical factors significantly influenced the diversity of endophytic bacteria. WC and OM were identified as the most important factors for endophytic and rhizospheric bacteria, respectively. This study provided the research basis for the scientific planting of C. pilosula.