{Reference Type}: Journal Article {Title}: Isotopic evidence for the dietary difference between Rhizostomeae Nemopilema nomurai and Semaeostomeae Cyanea nozakii. {Author}: Wang P;Zhang F;Chi X;Sun S; {Journal}: Mar Environ Res {Volume}: 199 {Issue}: 0 {Year}: 2024 Jul 17 {Factor}: 3.737 {DOI}: 10.1016/j.marenvres.2024.106608 {Abstract}: Blooms of the Rhizostomeae Nemopilema nomurai and the Semaeostomeae Cyanea nozakii have become more prominent in the coastal waters of China since the end of the 20th century. However, the trophic ecology of these jellyfish species remain incompletely understood. In this study, the trophic characterizations of N. nomurai and C. nozakii populations were assessed using stable isotope analysis (SIA), with a focus on the important bloom area offshore of the Yangtze Estuary. Our results indicated obvious trophic differences between two scyphomedusae. The higher trophic position of the C. nozakii population in the coastal planktonic food web was reflected by its relatively large δ15N value compared to that of N. nomurai. The MixSIAR model indicated that small copepods (<1000 μm) and seston were important food sources for N. nomurai, and showed a stable dietary, irrespective of N. nomurai size. Conversely, C. nozakii exhibited a more diverse diet composition, and gelatinous organisms also were an important part of the diet of C. nozakii. Moreover, a pronounced ontogenetic shift in the diet of C. nozakii was observed, consisting of an increase in the proportion of zooplanktonic prey (excluding seston) in the C. nozakii diet with diameter. This study provides isotopic evidence of the substantial difference in trophic ecology between N. nomurai and C. nozakii, which resulted from the variations in SI values and diet compositions. Inconsistent size-based variation patterns were observed in trophic ontogenetic shifts within the N. nomurai and C. nozakii groups, highlighting a need for further investigation. These results will give insights into the characteristics of trophic ecology and functional roles of Rhizostomeae and Semaeostomeae, and indicate the need for a more careful consideration of the representations of Rhizostomeae and Semaeostomeae in coastal ecosystems, so as not to underestimate the knowledge of taxon-specific ecological effects on energy flow.