{Reference Type}: Journal Article {Title}: Microsphere lens array embedded microfluidic chip for SERS detection with simultaneous enhancement of sensitivity and stability. {Author}: Dong Z;Liu X;Zhou S;Zhu Y;Chen J;Liu Y;Ren X;Lu YQ;Xiao R;Wang G; {Journal}: Biosens Bioelectron {Volume}: 261 {Issue}: 0 {Year}: 2024 Oct 1 {Factor}: 12.545 {DOI}: 10.1016/j.bios.2024.116505 {Abstract}: Surface enhanced Raman spectroscopy (SERS) utilizes the fingerprint features of molecular vibrations to identify and detect substances. However, in traditional single focus excitation scenarios, its signal collection efficiency of the objective is restricted. Furthermore, the uneven distribution of samples on the SERS substrate would result in poor signal stability, while the excitation power is limited to avoid sample damage. SERS detection system always requires precise adjustment of focal length and spot size, making it difficult for point-of-care testing applications. Here, we proposed a SERS microfluidic chip with barium titanate microspheres array (BTMA) embedded using vacuum self-assembled hot-pressing method for SERS detection with simultaneous enhancement of sensitivity and stability. Due to photonic nano-jets and directional antenna effects, high index microspheres are perfect micro-lens for effective light focusing and signal collecting. The BTMA can not only disperse excitation beam into an array of focal points covering the target uniformly with very low signal fluctuation, but enlarge the power threshold for higher signal intensity. We conducted a proof-of-principle experiment on chip for the detection of bacteria with immuno-magnetic tags and immuno-SERS tags. Together with magnetic and ultrasonic operations, the target bacteria in the flow were evenly congregated on the focal plane of BTMA. It demonstrated a limit of detection of 5 cells/mL, excellent signal reproducibility (error∼4.84%), and excellent position tolerance of 500 μm in X-Y plane (error∼5.375%). It can be seen that BTMA-SERS microfluidic chip can effectively solve the contradiction between sensitivity and stability in SERS detection.