{Reference Type}: Journal Article {Title}: Non-invasive Visualization and Characterization of Bile Canaliculus Formation Using Refractive Index Tomography. {Author}: Takeuchi K;Yasuhiko O; {Journal}: Biol Pharm Bull {Volume}: 47 {Issue}: 6 {Year}: 2024 {Factor}: 2.264 {DOI}: 10.1248/bpb.b24-00066 {Abstract}: The vital role of bile canaliculus (BC) in liver function is closely related to its morphology. Electron microscopy has contributed to understanding BC morphology; however, its invasiveness limits its use in living specimens. Here, we report non-invasive characterization of BC formation using refractive index (RI) tomography. First, we investigated and characterized the RI distribution of BCs in two-dimensional (2D) cultured HepG2 cells. BCs were identified based on their distinct morphology and functionality, as confirmed using a fluorescence-labeled bile acid analog. The RI distribution of BCs exhibited three common features: (1) luminal spaces with a low RI between adjacent hepatocytes; (2) luminal spaces surrounded by a membranous structure with a high RI; and (3) multiple microvillus structures with a high RI within the lumen. Second, we demonstrated the characterization of BC structures in a three-dimensional (3D) culture model, which is more relevant to the in vivo environment but more difficult to evaluate than 2D cultures. Various BC structures were identified inside HepG2 spheroids with the three features of RI distribution. Third, we conducted comparative analyses and found that the BC lumina of spheroids had higher circularity and lower RI standard deviation than 2D cultures. We also addressed comparison of BC and intracellular lumen-like structures within a HepG2 spheroid, and found that the BC lumina had higher RI and longer perimeter than intracellular lumen-like structures. Our demonstration of the non-destructive, label-free visualization and quantitative characterization of living BC structures will be a basis for various hepatological and pharmaceutical applications.