{Reference Type}: Journal Article {Title}: A Highly Sustainable Supramolecular Bioplastic Film with Superior Hydroplasticity and Biodegradability. {Author}: Jin H;Wu Z;Lin W;Cai Y;He L;Cao C;Wang X;Qian Q;Chen Q;Yan Y; {Journal}: ChemSusChem {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 15 {Factor}: 9.14 {DOI}: 10.1002/cssc.202400512 {Abstract}: Massive accumulation of postconsumer plastic waste in eco-system has raised growing environmental concerns. Sustainable end-of-life managements of the indispensable plastic are highly demanding and challenging in modern society. To relieve the plastic menace, herein we present a full life cycle sustainable supramolecular bioplastic made from biomass-derived polyelectrolyte (chitosan quaternary ammonium salt, QCS) and natural sodium fatty acid (sodium laurate, SL) through solid-phase molecular self-assembly (SPMSA), by which the QCS-SL complexes, precipitated from mixing the aqueous solutions, self-assemble to form bioplastic film by mildly pressing at room temperature. The QCS-SL bioplastic films display superior hydroplasticity owing to the water-activated molecular rearrangement and electrostatic bond reconstruction, which allows facile self-healing and reprocessing at room temperature to significantly extend the service lifetime of both products and raw materials. With higher water content, the dynamic electrostatic interactions and precipitation-dissolution equilibrium endow the QCS-SL bioplastic films with considerable solubility in water, which is promising to mitigate the plastic accumulation in aquatic environment. Because both QCS and SL are biocompatible and biodegradable, the dissolved QCS-SL films are nontoxic and environmentally friendly. Thus, this novel supramolecular bioplastic is highly sustainable throughout the whole life cycle, which is expected to open a new vista in sustainable plastic materials.