{Reference Type}: Journal Article {Title}: Tailorable acrylate-endcapped urethane-based polymers for precision in digital light processing: Versatile solutions for biomedical applications. {Author}: Pien N;Deroose N;Meeremans M;Perneel C;Popovici CŞ;Dubruel P;De Schauwer C;Van Vlierberghe S; {Journal}: Biomater Adv {Volume}: 162 {Issue}: 0 {Year}: 2024 Sep 9 暂无{DOI}: 10.1016/j.bioadv.2024.213923 {Abstract}: Bioengineering seeks to replicate biological tissues exploiting scaffolds often based on polymeric biomaterials. Digital light processing (DLP) has emerged as a potent technique to fabricate tissue engineering (TE) scaffolds. However, the scarcity of suitable biomaterials with desired physico-chemical properties along with processing capabilities limits DLP's potential. Herein, we introduce acrylate-endcapped urethane-based polymers (AUPs) for precise physico-chemical tuning while ensuring optimal computer-aided design/computer-aided manufacturing (CAD/CAM) mimicry. Varying the polymer backbone (i.e. poly(ethylene glycol) (PEG) versus poly(propylene glycol) (PPG)) and photo-crosslinkable endcap (i.e. di-acrylate versus hexa-acrylate), we synthesized a series of photo-crosslinkable materials labeled as UPEG2, UPEG6, UPPG2 and UPPG6. Comprehensive material characterization including physico-chemical and biological evaluations, was followed by a DLP processing parametric study for each material. The impact of the number of acrylate groups per polymer (2 to 6) on the physico-chemical properties was pronounced, as reflected by a reduced swelling, lower water contact angles, accelerated crosslinking kinetics, and increased Young's moduli upon increasing the acrylate content. Furthermore, the different polymer backbones also exerted a substantial effect on the properties, including the absence of crystallinity, remarkably reduced swelling behaviors, a slight reduction in Young's modulus, and slower crosslinking kinetics for UPPG vs UPEG. The mechanical characteristics of DLP-printed samples showcased the ability to tailor the materials' stiffness (ranging from 0.4 to 5.3 MPa) by varying endcap chemistry and/or backbone. The in vitro cell assays confirmed biocompatibility of the material as such and the DLP-printed discs. Furthermore, the structural integrity of 3D scaffolds was preserved both in dry and swollen state. By adjusting the backbone chemistry or acrylate content, the post-swelling dimensions could be customized towards the targeted application. This study showcases the potential of these materials offering tailorable properties to serve many biomedical applications such as cartilage TE.