{Reference Type}: Journal Article {Title}: Ultrashort wave diathermy inhibits pulmonary inflammation in mice with acute lung injury in a HSP70 independent way: a pilot study. {Author}: Yang X;Li K;Li M;Chen C;Yang X;Li J;Zhang H; {Journal}: Mol Biol Rep {Volume}: 51 {Issue}: 1 {Year}: 2024 Jun 14 {Factor}: 2.742 {DOI}: 10.1007/s11033-024-09686-0 {Abstract}: BACKGROUND: Acute lung injury (ALI) is a clinical syndrome characterized by pulmonary inflammation. Ultrashort wave diathermy (USWD) has been shown to be effective at in inhibiting ALI inflammation, although the underlying mechanism remains unclear. Previous studies have demonstrated that USWD generates a therapeutic thermal environment that aligns with the temperature required for heat shock protein 70 (HSP70), an endogenous protective substance. In this study, we examined the correlation between HSP70 and USWD in alleviating lung inflammation in ALI.
METHODS: Forty-eight male C57BL/6 mice were randomly divided into control, model, USWD intervention (LU) 1, 2, and 3, and USWD preintervention (UL) 1, 2, and 3 groups (n = 6 in each group). The mice were pretreated with LPS to induce ALI. The UL1, 2, and 3 groups received USWD treatment before LPS infusion, while the LU1, 2, and 3 groups received USWD treatment after LPS infusion. Lung function and structure, inflammatory factor levels and HSP70 protein expression levels were detected.
RESULTS: USWD effectively improved lung structure and function, and significantly reduced IL-1β, IL-10, TGF-β1, and TNF-α levels in both the USWD preintervention and intervention groups. However, HSP70 expression did not significantly differ across the experimental groups although the expression of TLR4 was significantly decreased, suggesting that USWD may have anti-inflammatory effects through multiple signaling pathways or that the experimental conditions should be restricted.
CONCLUSIONS: Both USWD intervention and preintervention effectively reduced the inflammatory response, alleviated lung injury symptoms, and played a protective role in LPS-pretreated ALI mice. HSP70 was potentially regulated by USWD in this process, but further studies are urgently needed to elucidate the correlation and mechanism.