{Reference Type}: Journal Article {Title}: S-cone contribution to oscillatory potentials in patients with blue cone monochromacy. {Author}: Righetti G;Kempf M;Kohl S;Wissinger B;Kühlewein L;Stingl K;Stingl K; {Journal}: Doc Ophthalmol {Volume}: 149 {Issue}: 1 {Year}: 2024 Aug 14 {Factor}: 1.854 {DOI}: 10.1007/s10633-024-09981-y {Abstract}: OBJECTIVE: The aim of this exploratory study is to investigate the role of S-cones in oscillatory potentials (OPs) generation by individuals with blue-cone monochromacy (BCM), retaining S-cones, and achromatopsia (ACHM), lacking cone functions.
METHODS: This retrospective study analyzed data from 39 ACHM patients, 20 BCM patients, and 26 controls. Central foveal thickness was obtained using spectral-domain optical coherence tomography, while amplitude and implicit time (IT) of a- and b-waves were extracted from the ISCEV Standard dark-adapted 3 cd.s.m-2 full-field ERG (ffERG). Time-frequency analysis of the same measurement enabled the extraction of OPs, providing insights into the dynamic characteristics of the recorded signal.
RESULTS: Both ACHM and BCM groups showed a significant reduction (p < .00001) of a- and b-wave amplitudes and ITs as well as the power of the OPs compared to the control groups. The comparison between ACHM and BCM didn't show any statistically significant differences in the electrophysiological parameters. The analysis of covariance revealed significantly reduced central foveal thickness in the BCM group compared to ACHM and controls (p < .00001), and in ACHM compared to controls (p < .00001), after age correction and Tukey post-hoc analysis.
CONCLUSIONS: S-cones do not significantly influence OPs, and the decline in OPs' power is not solely due to a reduced a-wave. This suggests a complex non-linear network influenced by photoreceptor inputs. Morphological changes don't correlate directly with functional alterations, prompting further exploration of OPs' function and physiological role.