{Reference Type}: Journal Article {Title}: Purification of Recombinant N-terminal Histidine-Tagged Arabidopsis thaliana Phosphoglycolate Phosphatase 1, Glycolate Oxidase 1 and 2, and Hydroxypyruvate Reductase 1. {Author}: Jossier M;Oury C;Glab N;Hodges M; {Journal}: Methods Mol Biol {Volume}: 2792 {Issue}: 0 {Year}: 2024 暂无{DOI}: 10.1007/978-1-0716-3802-6_8 {Abstract}: To measure the kinetic properties of photorespiratory enzymes, it is necessary to work with purified proteins. Protocols to purify photorespiratory enzymes from leaves of various plant species require several time-consuming steps. It is now possible to produce large quantities of recombinant proteins in bacterial cells. They can be rapidly purified as histidine-tagged recombinant proteins by immobilized metal affinity chromatography using Ni2+-NTA-agarose. This chapter describes protocols to purify several Arabidopsis thaliana His-tagged recombinant photorespiratory enzymes (phosphoglycolate phosphatase, glycolate oxidase, and hydroxypyruvate reductase) from Escherichia coli cell cultures using two bacterial strain-plasmid systems: BL21(DE3)-pET and LMG194-pBAD.