{Reference Type}: Journal Article {Title}: Influence of framing coil orientation and its shape on the hemodynamics of a basilar aneurysm model. {Author}: Panneerselvam NK;Sudhir BJ;Kannath SK;Patnaik BSV; {Journal}: Med Biol Eng Comput {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 10 {Factor}: 3.079 {DOI}: 10.1007/s11517-024-03146-4 {Abstract}: Aneurysms are bulges of an artery, which require clinical management solutions. Due to the inherent advantages, endovascular coil filling is emerging as the treatment of choice for intracranial aneurysms (IAs). However, after successful treatment of coil embolization, there is a serious risk of recurrence. It is well known that optimal packing density will enhance treatment outcomes. The main objective of endovascular coil embolization is to achieve flow stasis by enabling significant reduction in intra-aneurysmal flow and facilitate thrombus formation. The present study numerically investigates the effect of framing coil orientation on intra-aneurysmal hemodynamics. For the purpose of analysis, actual shape of the embolic coil is used, instead of simplified ideal coil shape. Typically used details of the framing coil are resolved for the analysis. However, region above the framing coil is assumed to be filled with a porous medium. Present simulations have shown that orientation of the framing coil loop (FCL) greatly influences the intra-aneurysmal hemodynamics. The FCLs which were placed parallel to the outlets of basilar tip aneurysm (Coil A) were found to reduce intra-aneurysmal flow velocity that facilitates thrombus formation. Involving the coil for the region is modeled using a porous medium model with a packing density of 20 % . The simulations indicate that the framing coil loop (FCL) has a significant influence on the overall outcome.