{Reference Type}: Journal Article {Title}: Emerging strategies for the prevention of bacterial biofilm in prosthetic surgery. {Author}: Tram MK;Schammel J;Vancavage R;Welliver C;Inouye BM; {Journal}: Transl Androl Urol {Volume}: 13 {Issue}: 5 {Year}: 2024 May 31 {Factor}: 2.479 {DOI}: 10.21037/tau-23-550 {Abstract}: Penile prosthesis implantation is an effective treatment for erectile dysfunction (ED) with high patient satisfaction and effectiveness. Unfortunately, infections remain a dreaded complication, often necessitating device removal and imposing a substantial healthcare cost. Biofilms are communities of microorganisms encased in a self-produced polymeric matrix that can attach to penile prostheses. Biofilms have been demonstrated on the majority of explanted prostheses for both infectious and non-infectious revisions and are prevalent even in asymptomatic patients. Biofilms play a role in microbial persistence and exhibit unique antibiotic resistance strategies that can lead to increased infection rates in revision surgery. Biofilms demonstrate physical barriers through the development of an extracellular polymeric substance (EPS) that hinders antibiotic penetrance and the bacteria within biofilms demonstrate reduced metabolic activity that weakens the efficacy of traditional antibiotics. Despite these challenges, new methods are being developed and investigated to prevent and treat biofilms. These treatments include surface modifications, biosurfactants, tissue plasminogen activator (tPA), and nitric oxide (NO) to prevent bacterial adhesion and biofilm formation. Additionally, novel antibiotic treatments are currently under investigation and include antimicrobial peptides (AMPs), bacteriophages, and refillable antibiotic coatings. This article reviews biofilm formation, the challenges that biofilms present to conventional antibiotics, current treatments, and experimental approaches for biofilm prevention and treatment.