{Reference Type}: Journal Article {Title}: Multiple androgen pathways contribute to the steroid signature of adrenarche. {Author}: Liimatta J;du Toit T;Voegel CD;Jääskeläinen J;Lakka TA;Flück CE; {Journal}: Mol Cell Endocrinol {Volume}: 592 {Issue}: 0 {Year}: 2024 Oct 1 {Factor}: 4.369 {DOI}: 10.1016/j.mce.2024.112293 {Abstract}: BACKGROUND: Adrenarche is a normal developmental event in mid-childhood characterized by increasing adrenal androgen secretion. The role of the classic androgen pathway has been well described in adrenarche, but the role of newer active androgens and additional androgen pathways is less clear.
OBJECTIVE: To study the contribution of novel androgens and related steroid biosynthesis pathways to the development of adrenarche, and to identify additional steroid biomarkers of adrenarche.
METHODS: A longitudinal study of children aged 6-8 years at baseline, followed up at ages 8-10 and 14-16 years. A total of 34 children (20 girls) with clinical and/or biochemical signs of adrenarche (cases) and 24 children (11 girls) without these signs (controls) at age 8-10 years were included. Serum steroid profiling was performed by liquid chromatography high-resolution mass spectrometry.
METHODS: Thirty-two steroids compartmentalized in progestagens, gluco- and mineralocorticoid pathways, and four androgen related pathways, including the classic, backdoor, 11-oxy, and 11-oxy backdoor pathways.
RESULTS: The classic and 11-oxy androgen pathways were more active, and serum concentrations of main androgens in the classic (dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione and androsterone) and 11-oxy (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione, and 11-ketotestosterone) pathways were higher in cases at ages 6-8 and 8-10 years. Pregnenolone concentrations at adrenarchal age (8-10 years) and cortisol concentrations at adolescence (14-16 years) were higher in cases. 11β-hydroxyandrosterone and 11-ketoandrosterone tended to be higher in cases with clinical signs compared to cases who had only biochemical evidence of adrenarche, albeit they were detected at low levels. In biomarker analyses, calculated steroid ratios with cortisol, cortisone, or 11-deoxycortisone as dividers were better classifiers for adrenarche than single steroids. Among these ratios, androstenedione/cortisone was the best.
CONCLUSIONS: The classic and 11-oxy androgen pathways are active in adrenarche. Children with earlier timing of adrenarche have higher serum cortisol levels at late pubertal age, suggesting that early adrenarche might have long-term effects on adrenal steroidogenesis by increasing the activity of the glucocorticoid pathway. Future studies should employ comprehensive steroid profiling to define novel classifiers and biomarkers for adrenarche and premature adrenarche.