{Reference Type}: Journal Article {Title}: Universal wing- and fin-beat frequency scaling. {Author}: Jensen JH;Dyre JC;Hecksher T; {Journal}: PLoS One {Volume}: 19 {Issue}: 6 {Year}: 2024 {Factor}: 3.752 {DOI}: 10.1371/journal.pone.0303834 {Abstract}: We derive an equation that applies for the wing-beat frequency of flying animals and to the fin-stroke frequency of diving animals like penguins and whales. The equation states that the wing/fin-beat frequency is proportional to the square root of the animal's mass divided by the wing area. Data for birds, insects, bats, and even a robotic bird-supplemented by data for whales and penguins that must swim to stay submerged-show that the constant of proportionality is to a good approximation the same across all species; thus the equation is universal. The wing/fin-beat frequency equation is derived by dimensional analysis, which is a standard method of reasoning in physics. We finally demonstrate that a mathematically even simpler expression without the animal mass does not apply.