{Reference Type}: Journal Article {Title}: High-Strength, Thin, and Lightweight Solid Polymer Electrolyte for Superior All-Solid-State Sodium Metal Batteries. {Author}: Zhang J;Su Y;Qiu Y;Zhang X;Xu F;Wang H; {Journal}: ACS Appl Mater Interfaces {Volume}: 16 {Issue}: 23 {Year}: 2024 Jun 12 {Factor}: 10.383 {DOI}: 10.1021/acsami.4c05023 {Abstract}: The utilization of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries has been extensively explored due to their excellent flexibility, processability adaptability to match roll-to-roll manufacturing processes, and good interfacial contact with a high-capacity Na anode; however, SPEs are still impeded by their inadequate mechanical strength, excessive thickness, and poor stability with Na anodes. Herein, a robust, thin, and cost-effective polyethylene (PE) film is employed as a skeleton for infiltrating poly(ethylene oxide)-sodium bis(trifluoromethanesulfonyl)imide (PEO/NaTFSI) to fabricate PE-PEO/NaTFSI SPE. The resulting SPE features a remarkable thickness of 25 μm, lightweight property (2.1 mg cm-2), superior mechanical strength (tensile strength = 100.3 MPa), and good flexibility. The SPE also shows an ionic conductivity of 9.4 × 10-5 S cm-1 at 60 °C and enhanced interfacial stability with a sodium metal anode. Benefiting from these advantages, the assembled Na-Na symmetric cells with PE-PEO/NaTFSI show a high critical current density (1 mA cm-2) and excellent long-term cycling stability (3000 h at 0.3 mA cm-2). The all-solid-state Na||PE-PEO/NaTFSI||Na3V2(PO4)3 coin cells exhibit a superior cycling performance, retaining 93% of the initial capacity for 190 cycles when matched with a 6 mg cm-2 cathode loading. Meanwhile, the pouch cell can work stably after abuse testing, proving its flexibility and safety. This work offers a promising strategy to simultaneously achieve thin, high-strength, and safe solid-state electrolytes for all-solid-state sodium metal batteries.