{Reference Type}: Journal Article {Title}: Blockage of L2HGDH-mediated S-2HG catabolism orchestrates macrophage polarization to elicit antitumor immunity. {Author}: Feng S;Wang D;Jin Y;Huang S;Liang T;Sun W;Du X;Zhuo L;Shan C;Zhang W;Jing T;Zhao S;Hong R;You L;Liu G;Chen L;Ye D;Li X;Yang Y; {Journal}: Cell Rep {Volume}: 43 {Issue}: 6 {Year}: 2024 Jun 25 暂无{DOI}: 10.1016/j.celrep.2024.114300 {Abstract}: The high infiltration of tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment prominently attenuates the efficacy of immune checkpoint blockade (ICB) therapies, yet the underlying mechanisms are not fully understood. Here, we investigate the metabolic profile of TAMs and identify S-2-hydroxyglutarate (S-2HG) as a potential immunometabolite that shapes macrophages into an antitumoral phenotype. Blockage of L-2-hydroxyglutarate dehydrogenase (L2HGDH)-mediated S-2HG catabolism in macrophages promotes tumor regression. Mechanistically, based on its structural similarity to α-ketoglutarate (α-KG), S-2HG has the potential to block the enzymatic activity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), consequently reshaping chromatin accessibility. Moreover, S-2HG-treated macrophages enhance CD8+ T cell-mediated antitumor activity and sensitivity to anti-PD-1 therapy. Overall, our study uncovers the role of blockage of L2HGDH-mediated S-2HG catabolism in orchestrating macrophage antitumoral polarization and, further, provides the potential of repolarizing macrophages by S-2HG to overcome resistance to anti-PD-1 therapy.