{Reference Type}: Journal Article {Title}: Chondrocyte autophagy mediated by T-2 toxin via AKT/TSC/Rheb/mTOR signaling pathway and protective effect of CSA-SeNP. {Author}: Lin X;Liu H;Qiao L;Deng H;Bao M;Yang Z;He Y;Xiang R;He H;Han J; {Journal}: Osteoarthritis Cartilage {Volume}: 0 {Issue}: 0 {Year}: 2024 May 28 {Factor}: 7.507 {DOI}: 10.1016/j.joca.2024.05.007 {Abstract}: OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage.
METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins.
RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway.
CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.