{Reference Type}: Journal Article {Title}: A mesoporous theranostic platform for ultrasound and photoacoustic dual imaging-guided photothermal and enhanced starvation therapy for cancer. {Author}: Liang X;Chen W;Wang C;Jiang K;Zhu J;Lu R;Lin Z;Cao Z;Zheng J; {Journal}: Acta Biomater {Volume}: 183 {Issue}: 0 {Year}: 2024 Jul 15 {Factor}: 10.633 {DOI}: 10.1016/j.actbio.2024.05.040 {Abstract}: Tumor starvation therapy utilizing glucose oxidase (GOx), has gained traction due to its non-invasive and bio-safe attributes. However, its effectiveness is often hampered by severe hypoxia in the tumor microenvironment (TME), limiting GOx's catalytic activity. To address this issue, a multifunctional nanosystem based on mesoporous polydopamine nanoparticles (MPDA NPs) was developled to alleviate TME hypoxia. This nanosystem integrated GOx modification and oxygenated perfluoropentane (PFP) encapsulation to address hypoxia-related challenges in the TME. Under NIR laser irradiation, the MPDA NPs exhibit significant photothermal conversion efficacy, activating targeted tumor photothermal therapy (PTT), while also serving as proficient photoacoustic (PA) imaging agents. The ensuing temperature rise facilitates oxygen (O2) release and induces liquid-gas conversion of PFP, generating microbubbles for enhanced ultrasound (US) imaging signals. The supplied oxygen alleviates local hypoxia, thereby enhancing GOx-mediated endogenous glucose consumption for tumor starvation. Overall, the integration of ultrasound/photoacoustic dual imaging-guided PTT and starvation therapy within MPDA-GOx@PFP@O2 nanoparticles (MGPO NPs) presents a promising platform for enhancing the efficacay of tumor treatment by overcoming the complexities of the TME. STATEMENT OF SIGNIFICANCE: A multifunctional MPDA-based theranostic nanoagent was developed for US/PAI imaging-guided PTT and starvation therapy against tumor hypoxia by direct O2 delivery. The incorporation of oxygenated perfluoropentane (PFP) within the mesoporous structure of MGPO not only enables efficient US imaging but also helps in alleviating tumor hypoxia. Moreover, the strong near-infrared (NIR) absorption of MGPO NPs promote the generation of PFP microbubbles and release of oxygen, thereby enhancing US imaging and GOx-mediated starvation therapy. Such a multifunctional nanosystem leverages synergistic effects to enhance therapeutic efficacy while incorporating US/PA imaging for precise visualization of the tumor.