{Reference Type}: Journal Article {Title}: How do fish consume microplastics? An experimental study on accumulation pattern using Nile tilapia (Oreochromis niloticus). {Author}: Muhib MI;Rahman MM; {Journal}: Environ Sci Pollut Res Int {Volume}: 31 {Issue}: 27 {Year}: 2024 Jun 30 {Factor}: 5.19 {DOI}: 10.1007/s11356-024-33782-0 {Abstract}: The aim of this study was to investigate microplastic (MP) exposure by Nile tilapia (Oreochromis niloticus) in laboratory conditions. A total of 150 tilapia fishes were equally distributed randomly in 15 different glass tanks with five experimental conditions. Observed results depicted that the presence of MPs in different organs was mainly accumulated from the fish feed rather than externally added MPs in the culture tanks. It was also revealed that the gastrointestinal tract (GIT) was found to be the most susceptible to MPs accumulation followed by gills and muscles in order. However, muscle contained the least size of MPs followed by GITs and gills. A statistical test showed significant correlations among the average length and weight of fish with MP exposure. A filamentous shape was found to be dominant in both GITs and gills while fragment shape was dominant in muscles. FTIR results revealed a total of 12 different polymers in the fish of which two polymers (polyvinyl alcohol and ethylene vinyl acetate) were not detected in the feed-only tanks. Polypropylene (PP) and polyethylene terephthalate (PET) were found to be dominant polymers in all the experimental GIT, gills, and muscle organs. FESEM results indicated the presence of different textures including cracks, edges, flakes, scratches, grooves, and adhering particles. EDX results exhibited the presence of Na, Si, K, Ni, Cu, Zn, As, and Cd in the analyzed samples that may pose additional health risks. Thus, this study could act as baseline data for laboratory-based studies of aquaculture species in future research.