{Reference Type}: Journal Article {Title}: Leukemia risk assessment of exposure to low-levels of benzene based on the linearized multistage model. {Author}: Jin K;Zhu F;Wu B;Li M;Wang X;Cheng X;Li M;Huang D;Xing C; {Journal}: Front Public Health {Volume}: 12 {Issue}: 0 {Year}: 2024 {Factor}: 6.461 {DOI}: 10.3389/fpubh.2024.1355739 {Abstract}: UNASSIGNED: To assess leukemia risk in occupational populations exposed to low levels of benzene.
UNASSIGNED: Leukemia incidence data from the Chinese Benzene Cohort Study were fitted using the Linearized multistage (LMS) model. Individual benzene exposure levels, urinary S-phenylmercapturic acid (S-PMA) and trans, trans-muconic acid (t, t-MA) were measured among 98 benzene-exposed workers from factories in China. Subjects were categorized into four groups by rounding the quartiles of cumulative benzene concentrations (< 3, 3-5, 5-12, ≥12 mg/m3·year, respectively). The risk of benzene-induced leukemia was assessed using the LMS model, and the results were validated using the EPA model and the Singapore semi-quantitative risk assessment model.
UNASSIGNED: The leukemia risks showed a positive correlation with increasing cumulative concentration in the four exposure groups (excess leukemia risks were 4.34, 4.37, 4.44 and 5.52 × 10-4, respectively; Ptrend < 0.0001) indicated by the LMS model. We also found that the estimated leukemia risk using urinary t, t-MA in the LMS model was more similar to those estimated by airborne benzene compared to S-PMA. The leukemia risk estimated by the LMS model was consistent with both the Singapore semi-quantitative risk assessment model at all concentrations and the EPA model at high concentrations (5-12, ≥12 mg/m3·year), while exceeding the EPA model at low concentrations (< 3 and 3-5 mg/m3·year). However, in all four benzene-exposed groups, the leukemia risks estimated by these three models exceeded the lowest acceptable limit for carcinogenic risk set by the EPA at 1 × 10-6.
UNASSIGNED: This study demonstrates the utility of the LMS model derived from the Chinese benzene cohort in assessing leukemia risk associated with low-level benzene exposure, and suggests that leukemia risk may occur at cumulative concentrations below 3 mg/m3·year.