{Reference Type}: Journal Article {Title}: Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. {Author}: Gonzalez-Candia A;Figueroa EG;Krause BJ; {Journal}: Biochem Pharmacol {Volume}: 0 {Issue}: 0 {Year}: 2024 May 25 {Factor}: 6.1 {DOI}: 10.1016/j.bcp.2024.116318 {Abstract}: Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.