{Reference Type}: Journal Article {Title}: NR1D1-transactivated lncRNA NUTM2A-AS1 promotes chemoresistance and immune evasion in neuroblastoma via inhibiting B7-H3 degradation. {Author}: Xiang T;Li Y;Liu G;Li X; {Journal}: J Cell Mol Med {Volume}: 28 {Issue}: 10 {Year}: 2024 May {Factor}: 5.295 {DOI}: 10.1111/jcmm.18360 {Abstract}: Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.