{Reference Type}: Journal Article {Title}: rESWT promoted angiogenesis via Bach1/Wnt/β-catenin signaling pathway. {Author}: Yang F;Guo J;Kang N;Yu X;Ma Y; {Journal}: Sci Rep {Volume}: 14 {Issue}: 1 {Year}: 2024 05 22 {Factor}: 4.996 {DOI}: 10.1038/s41598-024-62582-2 {Abstract}: Previous reports have established that rESWT fosters angiogenesis, yet the mechanism by which rESWT promotes cerebral angiogenesis remains elusive. rESWT stimulated HUVECs proliferation as evidenced by the CCK-8 test, with an optimal dosage of 2.0 Bar, 200 impulses, and 2 Hz. The tube formation assay of HUVECs revealed that tube formation peaked at 36 h post-rESWT treatment, concurrent with the lowest expression level of Bach1, as detected by both Western blot and immunofluorescence. The expression level of Wnt3a, β-catenin, and VEGF also peaked at 36 h. A Bach1 overexpression plasmid was transfected into HUVECs, resulting in a decreased expression level of Wnt3a, β-catenin, and VEGF. Upon treatment with rESWT, the down-regulation of Wnt3a, β-catenin, and VEGF expression in the transfected cells was reversed. The Wnt/β-catenin inhibitor DKK-1 was utilized to suppress Wnt3a and β-catenin expression, which led to a concurrent decrease in VEGF expression. However, rESWT treatment could restore the expression of these three proteins, even in the presence of DKK-1. Moreover, in the established OGD model, it was observed that rESWT could inhibit the overexpression of Bach1 and enhance VEGF and VEGFR-2 expression under the OGD environment.