{Reference Type}: Journal Article {Title}: Characterizing the relationship between modulation sensitivity and pitch resolution in cochlear implant users. {Author}: Camarena A;Goldsworthy RL; {Journal}: Hear Res {Volume}: 448 {Issue}: 0 {Year}: 2024 Jul 16 {Factor}: 3.672 {DOI}: 10.1016/j.heares.2024.109026 {Abstract}: Cochlear implants are medical devices that have restored hearing to approximately one million people around the world. Outcomes are impressive and most recipients attain excellent speech comprehension in quiet without relying on lip-reading cues, but pitch resolution is poor compared to normal hearing. Amplitude modulation of electrical stimulation is a primary cue for pitch perception in cochlear implant users. The experiments described in this article focus on the relationship between sensitivity to amplitude modulations and pitch resolution based on changes in the frequency of amplitude modulations. In the first experiment, modulation sensitivity and pitch resolution were measured in adults with no known hearing loss and in cochlear implant users with sounds presented to and processed by their clinical devices. Stimuli were amplitude-modulated sinusoids and amplitude-modulated narrow-band noises. Modulation detection and modulation frequency discrimination were measured for modulation frequencies centered on 110, 220, and 440 Hz. Pitch resolution based on changes in modulation frequency was measured for modulation depths of 25 %, 50 %, 100 %, and for a half-waved rectified modulator. Results revealed a strong linear relationship between modulation sensitivity and pitch resolution for cochlear implant users and peers with no known hearing loss. In the second experiment, cochlear implant users took part in analogous procedures of modulation sensitivity and pitch resolution but bypassing clinical sound processing using single-electrode stimulation. Results indicated that modulation sensitivity and pitch resolution was better conveyed by single-electrode stimulation than by clinical processors. Results at 440 Hz were worse, but also not well conveyed by clinical sound processing, so it remains unclear whether the 300 Hz perceptual limit described in the literature is a technological or biological limitation. These results highlight modulation depth and sensitivity as critical factors for pitch resolution in cochlear implant users and characterize the relationship that should inform the design of modulation enhancement algorithms for cochlear implants.