{Reference Type}: Journal Article {Title}: Downregulation of circ-RAPGEF5 inhibits colorectal cancer progression by reducing the expression of polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). {Author}: Cheng D;Chu F;Liang F;Zhang N;Wang J;Yue W; {Journal}: Environ Toxicol {Volume}: 39 {Issue}: 8 {Year}: 2024 Aug 22 {Factor}: 4.109 {DOI}: 10.1002/tox.24278 {Abstract}: BACKGROUND: Circular RNA (circRNA) plays a crucial role in the pathogenesis and progression of colorectal cancer (CRC). However, the current understanding of the emerging function and mechanism of circ-RAPGEF5 in CRC remains poorly understood.
METHODS: We first evaluated the expression level of circ-RAPGEF5 in CRC tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). Then, we analyzed cell proliferation (EdU and colony formation assay), migration (cell wound healing assay), invasion (transwell assay), and apoptosis (flow cytometry assay). To further elucidate the mechanism of circ-RAPGEF5 in CRC, bioinformatics tools, Dual-luciferase reporter assay, Ago2 RNA immunoprecipitation assay, and RNA pull-down assay were employed. Moreover, we established a CRC transplantation tumor model to evaluate the effect of circ-RAPGEF5 on tumor growth in vivo.
RESULTS: circ-RAPGEF5 was significantly upregulated in CRC tissues and CRC cells. Furthermore, the downregulation of circ-RAPGEF5 restrained CRC cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. Mechanistically, circ-RAPGEF5 accelerated the malignant behaviors of CRC cells by sponging miR-545-5p, which targeted polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In addition, we revealed that circ-RAPGEF5 silence curbed tumor growth in vivo.
CONCLUSIONS: These findings revealed that circ-RAPGEF5 played an oncogenic role through the miR-545-5p/GALNT3 axis in CRC progression, providing potential therapeutic targets for the treatment of CRC.