{Reference Type}: Journal Article {Title}: Capecitabine loaded potato starch-chitosan nanoparticles: A novel approach for targeted therapy and improved outcomes in aggressive colon cancer. {Author}: Bhattacharya S;Page A;Shinde P; {Journal}: Eur J Pharm Biopharm {Volume}: 200 {Issue}: 0 {Year}: 2024 Jul 17 {Factor}: 5.589 {DOI}: 10.1016/j.ejpb.2024.114328 {Abstract}: Aggressive colon cancer treatment poses significant challenges. This study investigates the potential of innovative carbohydrate-based nanoparticles for targeted Capecitabine (CTB) delivery. CTB nanoparticles were synthesized by conjugating CTB with potato starch and chitosan using ultrasonication, hydrolysis, and ionotropic gelation. Characterization included drug loading, rheology, Surface-Enhanced Raman Spectroscopy (SERS), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA). In vitro and in vivo antitumor activity was evaluated using HT-29 cells and N, N-dimethylhydrazine-induced Balb/c mice, respectively. Cellular assays assessed angiogenesis, migration, proliferation, and apoptosis. Nanoparticles exhibited a mean size of 245 nm, positive zeta potential (+30 mV), high loading efficacy (76 %), and sustained drug release (92 % over 100 h). CTB-loaded nanoparticles displayed superior colon histology, reduced tumour scores, and inhibited VEGD and CD31 expression compared to free CTB. Cellular assays confirmed significant antitumor effects, including reduced tube formation, migration, and proliferation, and increased apoptosis. This study demonstrates the promise of CTB-loaded potato starch-chitosan nanoparticles for aggressive colon cancer treatment. These findings highlight the potential of these nanoparticles for further evaluation in diverse cancer models.