{Reference Type}: Journal Article {Title}: Upregulation of neuronal ER-phagy improves organismal fitness and alleviates APP toxicity. {Author}: Mou W;Tang Y;Huang Y;Wu Z;Cui Y; {Journal}: Cell Rep {Volume}: 43 {Issue}: 5 {Year}: 2024 May 28 暂无{DOI}: 10.1016/j.celrep.2024.114255 {Abstract}: ER-phagy, a selective autophagy targeting the endoplasmic reticulum (ER) for lysosomal degradation through cargo receptors, plays a critical role in ER quality control and is linked to various diseases. However, its physiological and pathological roles remain largely unclear due to a lack of animal model studies. This study establishes Drosophila as an in vivo ER-phagy model. Starvation triggers ER-phagy across multiple fly tissues. Disturbing ER-phagy by either globally upregulating or downregulating ER-phagy receptors, Atl or Rtnl1, harms the fly. Notably, moderate upregulation of ER-phagy in fly brains by overexpressing Atl or Rtnl1 significantly attenuates age-associated neurodegenerations. Furthermore, in a Drosophila model of Alzheimer's disease expressing human amyloid precursor protein (APP), impaired ER-phagy is observed. Enhancing ER-phagy in the APP-expressing fly brain facilitates APP degradation, significantly alleviating disease symptoms. Therefore, our findings suggest that modulating ER-phagy may offer a therapeutic strategy to treat aging and diseases associated with ER protein aggregation.