{Reference Type}: Journal Article {Title}: Highly effective ultrafiltration membranes based on plastic waste for dye removal from water. {Author}: Mansor ES;Abdallah H;Shaban AM; {Journal}: Water Environ Res {Volume}: 96 {Issue}: 5 {Year}: 2024 May {Factor}: 3.306 {DOI}: 10.1002/wer.11018 {Abstract}: Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.