{Reference Type}: Journal Article {Title}: Upgrading anode graphite from retired lithium ion batteries via solid-phase exfoliation by mechanochemical strategy. {Author}: Wang X;Yu H;Zhou J;Wang H; {Journal}: Waste Manag {Volume}: 182 {Issue}: 0 {Year}: 2024 Jun 15 {Factor}: 8.816 {DOI}: 10.1016/j.wasman.2024.04.031 {Abstract}: Vast quantities of anode graphite from waste lithium ion batteries (LIBs), as a type of underrated urban mine, has enormous potential to be exploited for resource recovery. Herein, we propose a benign process integrating low-temperature pyrolysis and mechanochemical techniques to upcycle spent graphite (SG) from end-of-life LIBs. Pyrolysis at 500 °C leads to about 82.2 % PVDF dissociation in thermal treated graphite (TG). Solid-phase exfoliation via ball milling assisted by urea successfully produces abundant graphite flakes and a small amount of monolayer graphene nanosheet at the edge of mechanochemically processed graphite (MG). Subsequent rinsing removes the residual LiF salts. High purity and unique edge structural features of the as-prepared MG offer more active sites and storage reservoir for intercalation and de-intercalation of lithium ions, resulting in enhanced lithium-ion diffusion kinetics, excellent reversible specific capacity and desirable rate capability. Inspiringly, MG exhibits a remarkably enhanced initial specific charge capacity of 521.3 mAh g-1 during the first charge-discharge, and only declines from 569.9 mAh g-1 to 538 mAh g-1 with slight attenuation after 50 consecutive cycles at 0.1 A/g, indicating satisfactory cycle stability. Additionally, the purification and reconstruction mechanism for MG have been illustrated in detail. This study offers a green strategy to reconstruct and upgrade anode graphite from LIBs, which can realize sustainable waste management.