{Reference Type}: Journal Article {Title}: Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent. {Author}: Park B;Cho B;Cho J;Kim T; {Journal}: Environ Sci Technol {Volume}: 58 {Issue}: 17 {Year}: 2024 Apr 30 {Factor}: 11.357 {DOI}: 10.1021/acs.est.4c02811 {Abstract}: Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. Here, we present, for the first time, MP pollution in a deep-sea hydrothermal vent at one of the biodiversity hotspots─the Central Indian Ridge. Not only the environment (seawater: 2.08 ± 1.04 MPs/L, surface sediments: 0.57 ± 0.19 MP/g) but also all six major benthic species investigated were polluted by MPs. MPs mainly consisted of polypropylene, polyethylene terephthalate, and polystyrene fragments ≤100 μm and were characterized as being either transparent or white in color. Remarkably, bioaccumulation and even biomagnification of microplastics were observed in the top predators of the ecosystem, such as squat lobsters (14.25 ± 4.65 MPs/individual) and vent crabs (14.00 ± 2.16 MPs/individual), since they contained more MPs than animals at lower trophic levels (e.g., mussels and snails, 1.75-6.00 average MPs/individuals). These findings reveal MP contamination of an ecosystem in a hydrothermal vent, thereby suggesting that their accumulation and magnification can occur in top-level animals, even within remote and extreme environments.