{Reference Type}: Journal Article {Title}: Clinical feasibility of post-contrast accelerated 3D T1-Sampling Perfection with Application-optimized Contrasts using different flip angle Evolutions (SPACE) with iterative denoising for intracranial enhancing lesions: a retrospective study. {Author}: Yun SY;Heo YJ; {Journal}: Acta Radiol {Volume}: 65 {Issue}: 6 {Year}: 2024 Jun 16 {Factor}: 1.701 {DOI}: 10.1177/02841851241245104 {Abstract}: BACKGROUND: Post-contrast T1-Sampling Perfection with Application-optimized Contrasts using different flip angle Evolutions (SPACE) is the preferred 3D T1 spin-echo sequence for evaluating brain metastases, regardless of the prolonged scan time.
OBJECTIVE: To evaluate the application of accelerated post-contrast T1-SPACE with iterative denoising (ID) for intracranial enhancing lesions in oncologic patients.
METHODS: For evaluation of intracranial lesions, 108 patients underwent standard and accelerated T1-SPACE during the same imaging session. Two neuroradiologists evaluated the overall image quality, artifacts, degree of enhancement, mean contrast-to-noise ratiolesion/parenchyma, and number of enhancing lesions for standard and accelerated T1-SPACE without ID.
RESULTS: Although there was a significant difference in the overall image quality and mean contrast-to-noise ratiolesion/parenchyma between standard and accelerated T1-SPACE without ID and accelerated SPACE with and without ID, there was no significant difference between standard and accelerated T1-SPACE with ID. Accelerated T1-SPACE showed more artifacts than standard T1-SPACE; however, accelerated T1-SPACE with ID showed significantly fewer artifacts than accelerated T1-SPACE without ID. Accelerated T1-SPACE without ID showed a significantly lower number of enhancing lesions than standard- and accelerated T1-SPACE with ID; however, there was no significant difference between standard and accelerated T1-SPACE with ID, regardless of lesion size.
CONCLUSIONS: Although accelerated T1-SPACE markedly decreased the scan time, it showed lower overall image quality and lesion detectability than the standard T1-SPACE. Application of ID to accelerated T1-SPACE resulted in comparable overall image quality and detection of enhancing lesions in brain parenchyma as standard T1-SPACE. Accelerated T1-SPACE with ID may be a promising replacement for standard T1-SPACE.