{Reference Type}: Journal Article {Title}: Deubiquitinase PSMD7 facilitates pancreatic cancer progression through activating Nocth1 pathway via modifying SOX2 degradation. {Author}: Luo C;Yu Y;Zhu J;Chen L;Li D;Peng X;Liu Z;Li Q;Cao Q;Huang K;Yuan R; {Journal}: Cell Biosci {Volume}: 14 {Issue}: 1 {Year}: 2024 Mar 17 {Factor}: 9.584 {DOI}: 10.1186/s13578-024-01213-9 {Abstract}: BACKGROUND: Ubiquitination is a critical post-translational modification which can be reversed with an enzyme family known as deubiquitinating enzymes (DUBs). It has been reported that dysregulation of deubiquitination leads to carcinogenesis. As a member of the DUBs family, proteasome 26 S subunit non-ATPase 7 (PSMD7) serves as an underlying tumour-promoting factor in multiple cancers. However, the clinical significance and biological functions of PSMD7 in pancreatic cancer (PC) remain unclear.
RESULTS: In this study, we first reported frequent overexpression of PSMD7 in PC tissues, and high levels of PSMD7 were markedly linked to shorter survival and a malignant phenotype in PC patients. An array of in vitro and in vivo gain/loss-of-function tests revealed that PSMD7 facilitates the progression of PC cells. Additionally, we found that PSMD7 promotes PC cell progression by activating the Notch homolog 1 (Notch1) signalling. Interestingly, in PC cells, the inhibitory effect of PSMD7 knockdown on cellular processes was comparable to that observed upon Notch1 knockdown. Mechanistically, PSMD7 deubiquitinated and stabilised sex determining region Y (SRY)-box 2 (SOX2), a key mediator of Notch1 signalling. The stabilisation of SOX2, mediated by PSMD7, dramatically increased SOX2 protein levels, subsequently activating the Notch1 pathway. Finally, restoration of SOX2 expression abrogated the PSMD7-silenced antitumour effect.
CONCLUSIONS: Taken together, our work identifies and validates PSMD7 as a promoter of PC progression through augmentation of the Notch1 signalling pathway mediated by SOX2. This finding suggests that PSMD7 holds promise as a potential therapeutic target for the management of this refractory disease.