{Reference Type}: Journal Article {Title}: SNAT2-mediated regulation of estrogen and progesterone in the proliferation of goat mammary epithelial cells. {Author}: Jiang T;Ma X;Liu H;Jia Q;Chen J;Ding Y;Sun M;Zhu H; {Journal}: Amino Acids {Volume}: 56 {Issue}: 1 {Year}: 2024 Feb 23 {Factor}: 3.789 {DOI}: 10.1007/s00726-024-03382-w {Abstract}: The development of the goat mammary gland is mainly under the control of ovarian hormones particularly estrogen and progesterone (P4). Amino acids play an essential role in mammary gland development and milk production, and sodium-coupled neutral amino acid transporter 2 (SNAT2) was reported to be expressed in the mammary gland of rats and bovine mammary epithelial cells, which may affect the synthesis of milk proteins or mammary cell proliferation by mediating prolactin, 17β-estradiol (E2) or methionine function. However, whether SNAT2 mediates the regulatory effects of E2 and P4 on the development of the ruminant mammary gland is still unclear. In this study, we show that E2 and P4 could increase the proliferation of goat mammary epithelial cells (GMECs) and regulate SNAT2 mRNA and protein expression in a dose-dependent manner. Further investigation revealed that SNAT2 is abundantly expressed in the mammary gland during late pregnancy and early lactation, while knockdown and overexpression of SNAT2 in GMECs could inhibit or enhance E2- and P4-induced cell proliferation as well as mammalian target of rapamycin (mTOR) signaling. We also found that the accelerated proliferation induced by SNAT2 overexpression in GMECs was suppressed by the mTOR signaling pathway inhibitor rapamycin. This indicates that the regulation of GMECs proliferation mediated by SNAT2 in response to E2 and P4 is dependent on the mTOR signaling pathway. Finally, we found that the total content of the amino acids in GMECs changed after knocking-down and overexpressing SNAT2. In summary, the results demonstrate that the regulatory effects of E2 and P4 on GMECs proliferation may be mediated by the SNAT2-transported amino acid pathway. These results may offer a novel nutritional target for improving the development of the ruminant mammary gland and milk production.