{Reference Type}: Journal Article {Title}: Novel Flavonol Alkaloids in Green Tea: Synthesis, Detection, and Anti-Alzheimer's Disease Effect in a Transgenic Caenorhabditis elegans CL4176 Model. {Author}: Chen CH;Yang Y;Ke JP;Yang Z;Li JY;Zhang YX;Liu G;Liu Z;Yao G;Bao GH; {Journal}: J Agric Food Chem {Volume}: 72 {Issue}: 7 {Year}: 2024 Feb 21 {Factor}: 5.895 {DOI}: 10.1021/acs.jafc.3c06608 {Abstract}: Novel N-ethy-2-pyrrolidinone-substituted flavonols, myricetin alkaloids A-C (1-3), quercetin alkaloids A-C (4a, 4b, and 5), and kaempferol alkaloids A and B (6 and 7), were prepared from thermal reaction products of myricetin, quercetin, kaempferol─l-theanine, respectively. We used HPLC-ESI-HRMS/MS to detect 1-7 in 14 cultivars of green tea and found that they were all present in "Shuchazao," "Longjing 43", "Fudingdabai", and "Zhongcha 108" green teas. The structures of 1-4 and 6 were determined by extensive 1D and 2D NMR spectroscopies. These flavonol alkaloids along with their skeletal flavonols were assessed for anti-Alzheimer's disease effect based on molecular docking, acetylcholinesterase inhibition, and the transgenic Caenorhabditis elegans CL4176 model. Compound 7 strongly binds to the protein amyloid β (Aβ1-42) through hydrogen bonds (BE: -9.5 kcal/mol, Ki: 114.3 nM). Compound 3 (100 μM) is the strongest one in significantly extending the mean lifespan (13.4 ± 0.5 d, 43.0% promotion), delaying the Aβ1-42-induced paralysis (PT50: 40.7 ± 1.9 h, 17.1% promotion), enhancing the locomotion (140.0% promotion at 48 h), and alleviating glutamic acid (Glu)-induced neurotoxicity (153.5% promotion at 48 h) of CL4176 worms (p < 0.0001).